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Machine learning analyses are widely used for predicting cognitive abilities, yet there are pitfalls 
that need to be considered during their implementation and interpretation of the results. Hence, 
the present study aimed at drawing attention to the risks of erroneous conclusions incurred by 
confounding variables illustrated by a case example predicting executive function (EF) performance 
by prosodic features. Healthy participants (n = 231) performed speech tasks and EF tests. From 264 
prosodic features, we predicted EF performance using 66 variables, controlling for confounding 
effects of age, sex, and education. A reasonable prediction performance was apparently achieved for 
EF variables of the Trail Making Test. However, in-depth analyses revealed indications of confound 
leakage, leading to inflated prediction accuracies, due to a strong relationship between confounds and 
targets. These findings highlight the need to control confounding variables in ML pipelines and caution 
against potential pitfalls in ML predictions.

 Prediction of cognitive performance is a central goal in neuroscience and related areas of research. Predicting 
cognitive performance is relevant for several reasons. Firstly, it enables the identification of individuals who 
may be at risk of cognitive decline or neurodegenerative diseases at an early stage1–6. This, in turn, allows for 
preventative measures and early treatment. Secondly, predicting cognitive performance can help us understand 
the underlying mechanisms of cognitive function and identify potential biomarkers for cognitive abilities7,8. 
Thirdly, it can aid in the development of personalised training programs based on an individual’s cognitive 
capabilities9.

With the rising number of variables potentially related to cognitive performance, methods for predicting 
cognitive functions also increase in complexity. Machine learning (ML) offers a way to study individual 
differences by inspecting many different possible influencing factors. ML is a field of artificial intelligence in 
which models are trained on data, allowing them to uncover intricate relationships and improve over time. It 
involves advanced statistical algorithms, which learn patterns from feature-target data with the aim to generalise 
to previously unseen data10. Such methods are of practical use for exploratory research in various fields because 
unknown, linear, but most importantly non-linear, relationships of a large number of variables can be inspected 
easily and fast. ML approaches are gaining more importance as they are able to predict the target value of an 
unseen individual using their features. For instance, when impaired prosodic abilities are related to a disorder, 
a ML model could be useful for early detection and diagnosis. However, application of ML can be problematic 
when applied inappropriately, leading to inaccurate results and misleading conclusions.

One of the main challenges in ML relates to preventing models from displaying prediction values that are 
overly high in comparison to their actual predictive power10,11. Barring other reasons, this is usually the case 
when information that should be kept strictly separate is unintentionally fed into the ML pipeline. This process 
is referred to as leakage11,12. One form of leakage is the incorporation of information from confounding variables 
through the procedure of confound removal, i.e. confound-leakage13. Confound removal refers to the regression 
of the confounding effect from the data. Regressing out such confounds from the analysis of interest is standard 
practice in neuroscience and many fields of empirical research14. This approach is crucial when the primary goal 
is to examine the relationship between a feature variable and a target variable without the unwanted influence of 
a third, potentially biasing factor - commonly referred to as a confound variable. More precisely, confounding 
variables share variance with both the dependent (target) and the independent (explanatory or predictive) 
variable. This means that they are associated with both variables in the analysis and can potentially have an impact 
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on the relationship between them. It is desirable to remove the confounding information such that the model’s 
predictions are not influenced by it. A typical example can be found in models trained to predict intelligence, 
which may yield statistically significant results by relying solely on variance associated with age, rather than 
capturing genuine cognitive ability. By statistically controlling for confounding variables, one aims to isolate the 
effect of the predictor of interest, thereby improving the interpretability and validity of the results. However, it 
is plausible that confound removal procedures might inadvertently introduce confounding information rather 
than removing it, causing confound leakage15. Hamdan and colleagues13 showed that confound leakage may 
arise when standard linear confound regression is used in combination with nonlinear machine learning models, 
meaning that, paradoxically, confound-related variance can be introduced into the features during the confound 
removal process itself. This risk is amplified when confounds strongly correlate with the target or when using 
many features, potentially biasing model outcomes13.

In the following, we demonstrate this issue using a specific example from our research, which aimed to predict 
cognitive performance based on prosodic variables. As executive functions are crucial cognitive capabilities in 
everyday human life and constitute a basic requirement for speech and communication16–18, we focused on 
predicting executive function performance in this particular application.

The term “executive functions” represents a heterogeneous set of distinguishable processes19. According 
to Ward, executive functions represent complex abilities, with which people optimise their performance in 
situations that require the organisation of a series of cognitive processes20. In spite of the lack of a universal 
definition of executive function performance and its subordinated domains21, the grouping of working memory, 
inhibition, and cognitive flexibility22,23 is still the most popular24.

Executive functions are of great relevance in relation to various pathologies, as their impairment can be 
observed in numerous neurological and psychiatric disorders25–29. For this reason, their investigation, both in 
healthy people and in different patient groups, constitutes a central component of research and diagnostics. 
Despite great efforts, examination and characterisation of executive functions — and of other domains 
typically assessed in neuropsychological evaluations — have proven to be extremely difficult30. Not only is data 
acquisition time-consuming and costly, but the results are also dependent on subjective application factors, such 
as the qualification of the test conductor and the current condition of the person being tested. In addition, the 
measured performance depends on the individual’s motivation.

What we can take advantage of in the context of testing EF is the knowledge about the relationship between 
executive functions and language: It is assumed that executive functions act as a cognitive control mechanism 
for the syntactic processing of sentences31. Moreover, a large variety of disorders in communication ability are 
associated with impaired executive functions, including dysarthria, aphasia, language pragmatic disturbances, 
and verbal reasoning impairments16. In addition to the symptoms shown on the linguistic levels of phonetics and 
phonology, morphology and syntax, semantics and pragmatics, the described aspects of the impaired language 
function also relate to the level of prosody.

Prosody can be defined as the totality of all acoustically perceptible forms of expression of speech32. Since 
prosody belongs to the realm of the phonetic structures of language and is not tied to the categories of lexeme, 
morpheme or phoneme, prosodic subfunctions belong to the class of suprasegmentals of language. Although 
several classifications of prosody have been proposed, four main domains can be distinguished: frequency 
related parameters, energy/amplitude related parameters, spectral parameters, and temporal parameters33.

Against the background of current literature regarding the connections between linguistic and cognitive 
processes, methods can be developed to draw conclusions about underlying cognitive performance with the 
help of speech variables. In particular, the analysis of prosodic features by spontaneous speech samples provides 
advantages, as it offers a high external validity as well as time and cost efficiency compared to classical diagnostic 
procedures34–36. This is why procedures for objective speech analysis are gaining increasing popularity and are 
already in use in clinical diagnostics37,38.

Studies suggest that prosodic impairments may occur due to immature executive functions39. In addition, 
earlier patient studies have already shown a connection between right-hemispheric frontal brain damage and 
impairments of prosody40,41. Recent studies also demonstrated a relation between suprasegmental disorders, 
regarding impaired executive functions in Foreign Accent Syndrome42,43. Moreover, impaired working memory 
and impairment in prosody were observed in Parkinson’s Disease44, while reduced performance of fundamental 
frequency in connection with executive function damage was shown in frontotemporal dementia45. Furthermore, 
a link between prosody and divided attention, working memory and inhibition was shown in Autism Spectrum 
Disorder46. There is also clinical evidence that formant frequencies and Mel Frequency Cepstral Coefficients are 
associated with depressive disorders and potentially act as a biomarker47–50. A relationship between prosodic 
performance, precisely disfluencies and inhibition in healthy participants was also reported by Engelhardt and 
colleagues51.

In summary, a link between deficient executive subfunctions and impaired prosodic skills has been reported 
in different pathologies36–38,48. These associations can be utilised to predict cognitive functions. However, these 
findings are primarily based on patient studies and a limited selection of variables. Moreover, these studies 
often relied on manually extracted prosodic features, limiting their replicability and usefulness due to a lack of 
objectivity34. Therefore, our initial aim was to systematically test whether the reported correlations could predict 
cognitive performance in a healthy sample, using a fully automated feature extraction approach.

Methods
Participants
Participants were recruited at the Forschungszentrum Jülich and through social networks. Testing took place at 
the Forschungszentrum Jülich (Germany) in 2018. Each test session lasted between 150 and 180 min, depending 
on the participants’ speed and the duration of the instructions. 231 healthy participants without a diagnosis 
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of neurological or mental impairment were included in the present study (138 female, 93 male). The mean 
age of the sample at testing time was 35.2 years (standard deviation = 11.1, minimum = 20, maximum = 55). 
All participants were monolingual German. The sample varies regarding the level of education, ranging from 
participants who finished secondary school (n = 8), professional school/job training (n = 62), high school with a 
university-entrance diploma (n = 69), and university with a university degree (n = 92). All participants were paid 
an expense allowance of 50 EUR. The study was approved by the ethics committee of Heinrich Heine University 
Düsseldorf under the registration number 2,017,064,341. Informed consent was obtained from all participants. 
All experiments were performed in accordance with relevant named guidelines and regulations. Part of the data 
used in this study is publicly available upon request, as not all participants consented to data sharing52.

Design
The test sessions were divided into two parts: Firstly, the executive performance of the participants was assessed. 
Secondly, spontaneous speech performance was recorded in order to extract prosodic features from speech 
samples.

The executive function performance was assessed by the computerized test batteries Vienna Testsystem53 
and Psytoolkit54, containing common standard tests for measuring executive function performance. In total, 
66 variables from 14 different assessments of executive function performance were collected: Trail Making Test 
(TMT)55, Raven’s Standard Progressive Matrices56, Wisconsin Card Sorting Test57, Tower of London58, and Cued 
Task Switching59 are related to cognitive flexibility. Performance of N-back Non-verbal60, Non-verbal Learning 
Test61, and Corsi Block Tapping Test62 were used in relation to working memory. Inhibition was tested by Stop 
Signal Task63, Simon Task64, and Stroop Test65. Divided Attention Test66, Spatial Attention Test66, and Mackworth 
Clock Test67 were used to measure divided and spatial attention as well as vigilance. An overview of the assessed 
tests and the exact variables from these are shown in Table 1 (see Appendix A for the descriptions of the tests).

Spontaneous speech was tested based on a collection of three different speech samples per participant. Firstly, 
the participants were asked to describe the Cookie Theft Picture68 within 90  s in as much detail as possible. 
Secondly, the participants were asked to talk about what they had watched on television/what kind of book 
they had read the day before. Thirdly, the participants were asked to describe what their favourite holiday trip 
would look like if money and time were no limiting factors. For the narrative tasks retelling a story and fictional 
storytelling, they were asked to talk for five minutes. Participants conducted all tests via a laptop, an external 
keyboard, and a headset-microphone.

Test Abbreviation Variables

COGNITIVE FLEXIBILITY

Trail Making Test TMT Processing time part A, processing time part B, difference part B-A [seconds], quotient B/A, errors part A, errors part B

Raven’s Standard Progressive 
Matrices SPM Correct items, processing time

Wisconsin Card Sorting Test WCST Number of errors, number of perseveration errors, number of errors (non perseveration), timeouts

Tower of London TOL Planning ability, number of correct responses, changed his/her mind, self-correction, choice of wrong pole, choice of 
blocked pole, choice of impossible position

Cued Task Switching SWITCH Number of errors, timeouts, errors of items which are incongruent

WORKING MEMORY

N-back Non-Verbal NBN Correct items, number of commission errors, number of errors, mean reaction tine of correct items [seconds], mean 
reaction time of errors [seconds]

Non-Verbal Learning Test NVLT Sum of correct responses, sum of false responses, sum of difference between correct minus false responses, processing 
time

Corsi Block Tapping Test CORSI Block span, correct items, false items, missed items, sequency errors

INHIBITION

Stop Signal Task INHIB Reaction time [seconds], mean stop signal delay [seconds], stop signal reaction time [seconds], number of commission 
errors, Number of ommission errors

Simon Task SIMON Number of errors in compatible items, Number of errors in incompatible items

Stroop Test STROOP
Reading interference [seconds], naming interference [seconds], interference-difference [seconds], number of false 
reactions (reading-baseline), number of false reactions (naming-baseline), number of false reactions (reading-
interference), number of false reactions (naming-interference), processing time

ATTENTION / VIGILANCE

Divided Attention Test WAF-G
Number of missed items (unimodall visual), number of false alarm (unimodal visual), mean reaction time (unimodal 
visual) [ms], number of missed items (crossmodal visual/auditive), number of false alarm (crossmodal visual/auditive), 
mean reaction time (crossmodal) [ms]

Spatial Attention Test WAF-R
Mean reaction time (unannounced items) [ms], number of missed items (correct announced items), mean reaction 
time (correct announced items) [ms], number of missed items (wrong announced items), mean reaction time (wrong 
announced items) [ms], mean reaction time (short SOA) [ms], mean reaction time (long SOA) [ms], number of errors

Mackworth Clock Test MACK Number of missed jumps, number of false alarms

Table 1.  Assessed executive function variables adapted from Amunts et al69,70.
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Feature extraction
To generate the prosodic features from the audio files collected from the speech tasks, the toolbox OpenSmile 
(open-Source Media Interpretation by Large feature-space Extraction)71, version 2.1.3, was used to extract the 
suprasegmental parameters. Although the extraction and analysis of prosodic parameters for research purposes 
have been done for decades in various fields and is currently a topic of big interest in the context of speech 
biomarkers in different pathologies34 a lack of standardisation and thus comparability was observed71. The 
benefit of using the open-source toolbox OpenSmile is its standardised automatic computation of the prosodic 
features, resulting in a fixed feature set. It offers the extraction of prosodic features within a set that corresponds 
to the main categories frequency (representing the fundamental frequency), energy/amplitude (representing the 
intensity), spectral parameters, and temporal parameters (representing the duration). The choice of parameters 
was guided by the criteria of potentially indexing physiological changes in voice production and its theoretical 
significance in previous literature33. The feature set extended Geneva Minimalistic Acoustic Parameter Set 
(eGeMAPS) was chosen, which contains 88 prosodic features. In order to keep the extraction comparable, the 
first 90 s from each audio file were chosen as input. As there are three audio samples per participant, a total of 264 
prosodic features were generated per participant. All features were z-scored, i.e. the mean value was removed, 
and the variance was scaled to one unit. An overview of the extracted features and their descriptions, as well as 
the corresponding prosodic category, are shown in Table 2.

Machine learning and statistical analyses
Data management and analysis were performed using Python 372. A ML approach was applied to the data 
following the machine learning library JuLearn73. The 264 extracted prosodic feature variables were specified as 

Prosodic feature Variables Description

FREQUENCY RELATED PARAMETERS

F0semitone
Mean, standard deviation, percentiles, range, rising slope, falling slope 10

Pitch, logarithmic F0 on a semitone 
frequency scale, starting at 27.5 Hz 
(semitone 0)

Jitter
Mean, standard deviation 2 Deviations in individual consecutive F0 

period lengths

F 1–3 frequency & bandwith
Mean, standard deviation 12 Centre frequency of 1., 2., 3. formant, 

bandwidth of first formants 1, 2, 3

ENERGY / AMPLITUDE RELATED PARAMETERS

Loudness
Mean, standard deviation, percentiles, range, rising slope, falling slope 10 Estimation of perceived signal intensity 

from an auditory spectrum

Shimmer
Mean, standard deviation 2 Difference in peak amplitudes of 

consecutive F0 periods

Harmonics to noise ratio
Mean, standard deviation 2

Relation of energy in harmonic 
components to energy in noise- like 
components

SPECTRAL PARAMETERS

Spectral flux
Mean, standard deviation 3 Difference of the spectra of two 

consecutive frames

Mel frequency cepstral coefficients 1–4
Mean, standard deviation 16 Perceived pitch of the frequency spectrum

Harmonic differences
Mean, standard deviation 4

Ratio of energy of the first F0 harmonic 
(H1) to the energy of the second F0 
harmonic (H2)/to the energy of the highest 
harmonic in the third formant range (A3)

Alpha ratio
Mean, standard deviation 3 Ratio of summed energy from 50–1000 Hz 

and 1–5 kHz

Hammerberg Index
Mean, standard deviation 3

Ratio of the strongest energy peak in the 
0–2 kHz region to the strongest peak in the 
2–5 kHz region

Spectral slopes
Mean, standard deviation 6 Linear regression slope of the logarithmic 

power spectrum in the specified bands

F 1–3 energy
Mean, standard deviation 6 Formant 1, 2, and 3 relative energy

TEMPORAL PARAMETERS

Loudness peaks per second 1 Number of volume highlights per second

Voiced segments
Mean, standard deviation 3 Amount of continuously voiced regions

Unvoiced segments
Mean, standard deviation 2 Amount of the continuously unvoiced 

regions

Equivalent sound level 1 Sound pressure level which has the same 
total energy as the actual fluctuating noise

Table 2.  Grouped listing of the prosodic features extracted by the toolbox opensmile71.
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features and the 66 executive function variables as targets. The initial goal of our analyses was to predict each of 
the executive function targets using all of the prosodic features.

Firstly, cross-validation was used to determine the model performance. In cross-validation, the dataset is 
randomly partitioned into equally sized folds. All folds except for one are used for training the model. The hold-
out fold is then used to determine the trained model’s performance on unseen data. This process is repeated 
once for each fold as the validation fold. Then, the average of the validation performances is calculated74. Cross-
validation was applied with ten folds (Fig. 1). Since all of the prosodic features were used to predict each of the 
66 targets, 66 independent cross-validation models were performed.

In order to keep the folds balanced, stratification by target was implemented into the cross-validation 
pipeline, meaning that the different folds approximately followed the same distribution of the respective target15. 
Stratification can usually improve the success of model training by ensuring that the training and test data have 
similar distribution which reduces the risk of bias or error in the evaluation of the model. Knowing the influence 
of different demographic aspects on prosodic performance75,76 we regressed out the effects of the confounding 
variables sex, age, and education from the features with a linear regression model. This is standard practice since 
the goal is to shed light on the relationship between executive functions and prosodic features, independently of 
factors that are additionally related to the constructs12,77.

There are several regression models to choose from for usage in machine learning approaches. With his 
theorem No Free Lunch Wolpert postulated that there is no general best machine learning algorithm for all 
predictive modeling problems such as classification and regression78. We chose the Random Forest Regressor as 
it has already demonstrated to predict executive functions in previous studies70,79,80 and is commonly used81,82. 
Random Forest is an ensemble estimator that fits a number of decision trees on various sub-samples of the 
dataset and uses averaging to improve the predictive accuracy and to control over-fitting. The decisions made by 
each tree carry equal weight, while the order of the decisions is random83.

Following Poldrack et al84., accuracy was assessed by the coefficient of determination (R²)85, which measures 
how well the regression predictions approximate the real data points. It can be interpreted as the proportion 
of the variance in the dependent variable that is predictable from the independent variables. R² ranges from 
0 to 1, where 1 indicates that the regression model perfectly predicts the data. In cases of negative values, the 
mean of the data alone fits the results better than the predicted values. Thus, negative values mean a very poor 
generalisation of the model. For the cross-validation results, the mean of R² was calculated over 10 folds.

Secondly, the aim of our study was to investigate which of the many prosodic features were important in 
connection to all features to train the model successfully. For this purpose, the feature importance was calculated 
by the impurity-based feature importance of Random Forest, also known as the Gini importance86,87. When 
building a decision tree, features are selected at each node in order to divide the data into subsets that are as 
“pure” as possible with regard to the target variable. Gini Impurity measures how often a randomly chosen data 
point within a subset would be incorrectly labeled, reflecting the degree of disorder or „impurity” within the 
data. In contrast, Gini Importance assesses the overall decrease in node impurity resulting from splits based 
on a specific feature. It considers the probability of reaching each node and calculates the weighted reduction 
in impurity. Features with higher Gini importance are considered more important for predicting the target 
variable86. Feature importance was computed for the final estimator, as well as for each fold to estimate the 
variability of the importance. The sum of all feature importance scores adds up to 1.

Fig. 1.  10-fold cross-validation design for each executive function target.
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Thirdly, detailed analyses were conducted to examine the effects of confound removal and stratification. 
Here, we used other models such as Random Forest Regressor, ExtraTree Regressor, and Ridge Regression to 
regress out the confounds from the features in order to compare model performance depending on how the 
confounds were removed.

Moreover, we employed an approximate permutation test approach, suggested by North and colleagues88, to 
disentangle predictive information of the features from that of the confounds. To achieve this, we permuted each 
feature separately. Here, the association between features and targets is randomised, while the association between 
confounds and targets remains unchanged. 10-fold cross-validation was performed for each permutation, and 
R² scores for 1000 permutations were used to construct an empirical null distribution, from which p-values were 
computed as the proportion of permuted R² scores greater than or equal to the R² score of the original non-
permuted data. The threshold value for the two-tailed test was set to p = 0.05. Significant p-values indicate that 
predictive information stems from the features rather than the confounds alone.

Results
In cross-validation, the models were trained to predict each of the EF targets using all of the prosodic features. 
Regression of the confounding features sex, age, and education, and stratification by target distribution were 
performed. Evaluation was estimated using the coefficient of determination R² averaged over the 10 folds.

Out of 66 executive function targets, 53 variables did not show positive R² values, indicating no predictive 
power for these targets using our modeling approach. 13 executive function targets showed positive R² values 
(Fig. 2). However, only two targets, TMT BTA (processing time part A) and TMT BTB (processing time part B), 
showed R² values > 0.1, representing a reasonable model fit. The described TMT variables belong to the cognitive 
flexibility domain. An overview of R² of all 66 EF targets can be found in the supplements.

Fig. 2.  Prediction of executive function targets by prosodic features. Cross-validation model with confound 
removal and stratified by target distribution. Only targets with positive R² values are displayed. TMT 
BTA = Trail Making Test - processing time part A, TMT BTB = Trail Making Test - processing time part B.
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Feature importance was calculated in order to determine which of the prosodic features were particularly 
important for successfully predicting the EF targets. Since we observed good prediction performance (R² > 0.1) 
for TMT BTA and TMT BTB, we only computed feature importance for these targets. Figures 3 and 4 present 
the ten most important features predicting the EF targets TMT BTA and TMT BTB (see Appendix B for the 
feature importance of all prosodic variables). The majority of features identified as most important belong to the 
spectral prosodic domain. The most frequently appearing prosodic features were the Mel Frequency Cepstral 
Coefficients.

For the purpose of validation, we contrasted the effects of confound removal and stratification on the 
prediction performance for the targets TMT BTA and TMT BTB. To begin with, we compared the prediction 
results with the performance of the cross-validation model without regressing out the confounding variables sex, 
age, and education. These results indicated a worse prediction compared to the results with confound removal. 
Results are displayed in Fig. 5. For both TMT targets, prediction performance decreased when not removing 
the confounding variables. This is true for the stratified set up, as well as for the non-stratified set up. Prediction 
performance also decreases when not stratifying the cross-validation folds.

To explore the mechanism behind the decrease in prediction performance for the pipeline without confound 
removal further, and to examine whether it is related to the specific confound removal model used, we exchanged 
the standard confound removal model Linear Regression with other models, such as Random Forest Regressor, 
ExtraTree Regressor and Ridge Regression. As demonstrated in Fig.  6, the prediction performance varies 
depending on the choice of the confound removal model. The pipelines with the confound removal models 
Linear Regression and Ridge Regression indicate higher R² values than the pipelines with the confound removal 
models Random Forest Regressor and ExtraTree Regressor.

Finally, we evaluated the conditions with different confound removal models by using permutation tests. 
For the EF target TMT BTA with the cross-validation regressor Random Forest and the confound removal 
model Random Forest R² of 0.057 is significant (p = 0.001). For the EF target TMT BTB with the cross-validation 

Fig. 3.  Feature importance for TMT BTA. TMT BTA = Trail Making Test - processing time part A, 
SD = standard deviation, M = mean, PD = picture description, RS = retelling a story, FS = fictional storytelling.
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regressor Random Forest and the confound removal model Ridge Regression R² of 0.196 is significant (p = 0.032) 
such as with the cross-validation regressor Random Forest and the confound removal model Linear Regression 
R² of 0.205 (p = 0.017). As shown in Table 3, all other positive prediction performances, measured by R² values, 
are not significant.

To summarise, we initially found a moderate predictive power of TMT BTA and TMT BTB by prosodic 
features. However, considering all results, there is a decrease in predictive power when not removing the 
confounding variables sex, age, and education, indicating confound leakage. In addition, the predictive power 
increases when stratification is performed. Pipelines with different models for removing confounding factors 
perform differently. Ultimately, two out of 20 models are significant, which suggests that the prediction is at least 
partly driven by the features in these models.

Discussion
This study is based on an investigation of the relationship between executive functions and prosody through 
examining whether prosodic features can predict executive functions. In summary, we preliminarily found a 
moderate predictive power of prosodic features for TMT BTA and TMT BTB. However, considering all results, 
there is a decrease in predictive power when not removing the confounding variables sex, age, and education, 
indicating confound leakage for most of the models.

Firstly, we evaluated 66 models, each predicting one executive function variable from the prosodic features. 
We employed 10-fold cross-validation with stratification by target variable and confound removal of sex, age, 
and education. The results showed poor or no prediction performance for 64 out of 66 EF targets.

Only the models for the TMT targets TMT BTA and TMT BTB, relating to cognitive flexibility, initially 
appeared to have a moderately valid predictive performance. Without the additional analyses that we conducted 
for validation, these results could be interpreted as follows: Our results would have confirmed findings from 
previous studies on a narrow correlation between executive functions and language in general18,89, and would 

Fig. 4.  Feature importance for TMT BTB. TMT BTB = Trail Making Test - processing time part B, 
SD = standard deviation, M = mean, PD = picture description, RS = retelling a story, FS = fictional storytelling.
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have been in line with research conducted in different patient cohorts44,46,51, reporting connections between 
cognitive flexibility and prosody35. In our study, we would have found these associations in healthy participants. 
Based on these results, we would have concluded that the strong connection between TMT performance and 
prosody is likely the key factor driving the superior predictive accuracy observed in the TMT results. Both 
TMT performance and prosody processing share common cognitive mechanisms, particularly those related 
to attention, working memory, and cognitive flexibility. Both tasks require sustained and selective attention 
as well as attentional control: TMT for tracking targets and switching, prosody for detecting and setting vocal 
cues and phrase boundaries. TMT especially relies on working memory to keep track of sequences and rules, 
while prosody processing uses working memory to hold and integrate auditory information over time. TMT 
BTB measures cognitive flexibility and the ability to switch between tasks, which corresponds to the need to 
switch attention between different prosodic cues or emotional tones in speech. Additionally, both require rapid 
processing, TMT for visual-motor speed, prosody for timely receptive and productive communication90–92.

Moreover, both the TMT and prosody processing share brain activation in the prefrontal cortex and parietal 
structures, meaning TMT performance primarily engages frontoparietal networks associated with executive 
control, and these same regions are also implicated in prosody processing, particularly in the context of 
cognitive-linguistic integration. Prosody processing such as coordinating tone, rhythm, and emotion in speech 
also engages the prefrontal cortex for high-level cognitive processes and executive control, as well as parietal 
regions for attention and processing of auditory information93,94. Additionally, the TMT’s test design appears 
particularly sensitive to subtle individual differences, a characteristic that likely contributes to its superior 
predictive performance95. Previous research has also shown that TMT performance is most predictable from 
speech features derived from verbal fluency tasks70. Consistent with the literature, this study would have 
shown that features from various prosodic domains are important for the models to learn. This would have 

Fig. 5.  Prediction of TMT targets in different conditions regarding confound removal and stratification. 
TMT BTA = Trail Making Test - processing time part A, TMT BTB = Trail Making Test - processing time 
part B, confounding variables (sex, age, education) and stratification: with CR = with confound removal, 
strat = stratified, without CR = without confound removal.
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TMT BTA TMT BTB

Condition R2 p-value Condition R2 p-value

CRmodelRF −0.142 0.009 CRmodelRF −0.343 0.161

CRmodelRF_strat 0.057 0.001 CRmodelRF_strat −0.171 0.069

CRmodelET −0.172 0.001 CRmodelET −0.156 0.001

CRmodelET_strat −0.003 0.005 CRmodelET_strat −0.082 0.001

CRmodelRidge 0.097 0.691 CRmodelRidge 0.106 0.058

CRmodelRidge_strat 0.262 0.188 CRmodelRidge_strat 0.196 0.032

CRmodelLG 0.102 0.633 CRmodelLG 0.081 0.162

CRmodelLG_strat 0.260 0.200 CRmodelLG_strat 0.205 0.017

Table 3.  Comparison of different confound removal models complemented by the p-value. 
CRmodel = Confound removal model, RF = Random forest Regressor, ET = ExtraTree Regressor, LG = Linear 
Regression, Ridge = Ridge Regression, withoutCR = without confound removal, strat = stratified.

 

Fig. 6.  Prediction of TMT targets in different conditions regarding different confound removal models. 
TMT BTA = Trail Making Test - processing time part A, TMT BTB = Trail Making Test - processing time 
part B, confounding variables (sex, age, education) and stratification. CRmodel = Confound removal model, 
RF = Random Forest Regressor, ET = ExtraTree Regressor, Ridge = Ridge Regression, LG = Linear Regression, 
withoutCR = without confound removal, strat = stratified.
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validated that prosodic features of different kinds are closely related to executive functions, as described in 
previous studies96–98. Furthermore, predominantly spectral prosodic parameters would have shown importance 
for the model fits, especially the Mel Frequency Cepstral Coefficients, which are already used as a biomarker 
in depressive disorders48,50. As described in Table 2, the Mel Frequency Cepstral Coefficients are defined as 
the perceived pitch of the frequency spectrum. More precisely, these are coefficients of the Mel scale, which 
relates the perceived frequency of a tone to the actual measured frequency. It scales the frequency in order 
to match more closely what the human ear can hear99. It therefore would have been deduced from the study 
that spectral parameters, in particular the Mel Frequency Cepstral Coefficients, are closely related to executive 
functions. Furthermore, the findings would have confirmed that easy-to-capture spontaneous speech derived 
from different tasks is suitable for the extraction of prosodic features. In summary, the present research would 
have raised the possibility that this predictive power of prosodic features could be an important biomarker for 
executive function impairment or its future decline.

However, given the additional in-depth analyses of the ML pipeline that partly invalidate the initial results, 
our findings need to be reinterpreted as follows:

We expect models to perform better if the effects of the confounding variables are not excluded, given that 
this would provide more information for the algorithm to learn. However, the prediction performance decreases 
for both TMT targets when not removing the confounding variables sex, age, and education. This is not in line 
with our expectation because in our scenario, the prediction performance should be worse if the confounding 
variables are removed, as the algorithm can then only learn from the association between confound-free 
features and the target. Despite the differences in prediction accuracy between the pipelines with and without 
confound removal being rather small, we deduce that information from these confounds, namely sex, age, and 
education leaked into the predictions through the confound removal procedure. The inadvertent injection of 
this information occurs particularly when the confounding variables and the targets show a strong correlation 
and this is coupled with the use of a high number of features, as explained by Hamdan et al.13 and Sasse & 
Nicolaisen-Sobesky et al.12. This is indeed the case in our dataset (see Appendix C). There is a strong correlation 
between the TMT targets and the confounding variables. In addition, we use a high number of features within 
the cross-validation pipeline, because we wanted to investigate EF and prosody in an exploratory manner. While 
our dataset was relatively small compared to most ML studies, which typically increases the risk of leakage100, 
it represents a reasonable size when compared to studies investigating speech biomarkers34. Prior work using 
larger samples also observed confound leakage13, which suggests that this is a general issue and not merely a 
consequence of limited sample size. The results also confirm that these observations occur in both stratified 
and non-stratified conditions. As expected, it can be shown that stratification by target distribution generally 
increases the predictive performance. This is in line with Diamantidis et al101. and Hastie et al15., who show that 
equally representative cross-validation folds lead to improved predictive power. Additionally, it is demonstrated 
that stratification can also increase confound leakage. This can be derived from the fact that the difference in 
predictive power between the pipelines with and without confound removal is even greater in the stratified 
condition (Fig. 6). Furthermore, the results illustrate that the observed confound leakage is not bound to the use 
of Linear Regression as the confound removal model but also occurs when other models are employed.

Overall, these observations raise concerns about the trustworthiness of the primary results. Nonetheless, one 
cannot definitively rule out whether information from the features also influenced the predictive power of the 
present results. We, therefore, conducted permutation testing for the different cross-validation models. Since 
the permutation tests for the two TMT targets each identified models that can be interpreted as significant, we 
speculate that predictive power is partly due to the information contained in the features despite the confounding 
variables also contributing to the prediction. However, this was only observed in two of 66 EF targets and for 
these two targets only in specific confound removal models. For this reason, we only conditionally derive the 
predictive power of prosodic features. Further analyses of this type with other datasets would need to be carried 
out to verify this.

With this example, we aim to raise awareness that the influence of confounding factors in ML analyses, 
especially in the prediction of cognitive performance, must be rigorously addressed. The central message of our 
study is the need for careful quality control when handling potential confounds, as even subtle or unrecognised 
sources of confound leakage can unintentionally skew results, leading to misleading conclusions. Importantly, 
such distortions can occur even when standard ML procedures are applied correctly.

When confound leakage happens, information from confounding variables unintentionally leaks into the 
model, artificially inflating performance. This leads to overly high prediction accuracies14. The inappropriate 
control of confounds can be caused by different factors: On one hand, this can occur if confounding variables are 
inadvertently retained in the data despite attempts to remove them. This can arise in erroneous cross-validation 
applications12. On the other hand, this can also occur in a correctly implemented ML pipeline, specifically due 
to leakage stemming from continuous features that deviate from a normal distribution or from unbalanced 
features with limited precision13. In general, a strict separation of training and test set during cross-validation is 
mandatory, meaning that the confound removal models should be trained on the training data and then applied 
to both training and test data within each cross-validation fold, to prevent information leaking through11,73,100. 
In addition, we suggest to always compare results with and without confound adjustment as a standard routine. 
Moreover, analyses should be performed to clarify the relationship between possible confounds and the target 
variables. We further advise evaluating whether models trained on data with confound removal perform better 
than models trained on data with completely shuffled features.

By highlighting these methodological challenges, our goal is to encourage more rigorous handling of 
confounds in future ML-based cognitive research. Paying attention to these factors minimises the risk of 
confound leakage results, but does not guarantee correctness, as these points cannot claim to be exhaustive.
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In conclusion, the present results highlight the pitfalls when conducting ML analyses with the aim of predicting 
variables of interest including cognitive performance. This example shows which misinterpretations could have 
been deduced from the initial results. This can be particularly dangerous if the findings match previous studies, 
as in the case here. This is crucial, as ML studies are becoming increasingly important and widely employed, 
especially with the accessibility of large amounts of data. In this respect, we caution and recommend that 
when using ML analyses to predict cognitive performance, quality controls should be performed to prevent 
false results. This is also true when interpreting ML results of other researchers. This study has contributed 
to uncovering more insight into a pitfall in ML analysis arising due to confound leakage. As confounding is 
ubiquitous in social and biological sciences, it should be further deciphered how confound leakage occurs and 
which contributing factors can be taken into account.

Data availability
Part of the data used in this study is publicly available upon request. Researchers who wish to acquire access 
to the data are kindly asked to contact Julia A. Camilleri at spexdata@fz-juelich.de, as described in the related 
publication Camilleri et al.52.

Code availability
The code used in this study is publicly available at Github and archived with the DOI: ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​8​1​/​z​
e​n​o​d​o​.​1​5​3​0​1​8​7​4​​​​​.​​
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